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Definition - Let X be a metric space with metric d and let {xn} = {x1, x2…., xn,…}be 

a sequence of points in X. We say that {xn} is convergent if  a point xX such that 

either 

(i) for each  > 0,    a positive integer n0 such that d (xn, x) <  ,   x  n0 

OR  

(ii) for each open sphere S (x) centred on x,  a positive integer n0 such that 

    xn  S (x),   n  n0 

We usually symbolize this by writing xn  x 

The point x is called the limit of the sequence {xn} and we sometimes write  

Lim  xn = x 

               n  

Theorem   Limit of a convergent sequence is always unique. 

Proof Let {xn} be a sequence in a metric space X converging to xX 

  i. e.   xn  xX 

Let, if possible,    xn  yX  (x  y) 

Consider,  d (x, y)  d (x, xn) + d (xn, y)   (By triangle inequality) 

  = d (xn, x) + d (xn, y)    (By Symmetry) 

   0 as   n  

[
∵ 𝑥𝑛 → 𝑥 ⟹ 𝑑(𝑥𝑛, 𝑥) → 0     𝑎𝑠  n 

  𝑥𝑛 → 𝑦 ⟹ 𝑑(𝑥𝑛, 𝑦) → 0     𝑎𝑠  n 
] 

 

  i.e.  d (x, y)  0   as n  

     x = y 

Therefore, the limit of a sequence is always unique. 
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Definition  Cauchy Sequence 

A sequence { xn } in a metric space X with metric d is said to be a Cauchy  sequence if for 

any  > 0,  a positive integer n0 such that 

    d (xn, xm) <      n, m  n0 

Theorem  Every convergent sequence is Cauchy. 

Proof Let {xn} be a convergent sequence ln a metric space X with metric d. 

               Suppose   xn  xX 

So, for a given  > 0,  a positive integer n0 such that 

  d (xn, x) < 
 

2
    n  no . 

For  m, n  no 

  d (xn, xm)  d (xn, x) + d (x, xm)   (By triangle inequality) 

 = d (xn, x) + d (xm, x)    (By Symmetry) 

 < 
 

2
 + 

 

2
=   

 d (xn, xm) <    n, m  n0 

 The sequence {xn} is a Cauchy sequence. 

Remark  Converse of the above theorem is not true. 

        i.e. A Cauchy sequence need not be convergent. 

Example  Let X = (0, 1) be the subspace of the real line. Let {xn} be a sequence in X 

defined by xn = 
1 

𝑛
 

Proof First, we show that  {xn} is a Cauchy sequence. 

Now  d (xn, xm) = xn - xm =  
1 

𝑛
−

1 

𝑚
   0   as n, m   

 {xn} is a Cauchy sequence in X.  

Next, we claim  that {xn} is not convergent in X. 

Now xn = 
1 

𝑛
 

Clearly, Lim xn =  Lim 
1 

𝑛
  0 

               n   n  

But 0    X = (0,1) 

Therefore, the given sequence is not convergent in X, though it is Cauchy in X. 
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Observations 

1. Let {xn} be a sequence such that xn=1   n 

Solution  Given sequence is of the type 

  {1, 1, 1, ………, 1,1,………}  

Now lim xn = lim 1=1 

         n    n  

 Limit of the sequence = 1   ……….(1) 

Now, limit point of the set of points of the sequence {xn} = {1,1,1,……} 

= {1} =    …………..(2) 

From equation (1) & (2), we get 

   Limit  Limit point 

2. Let {xn} be a sequence such that xn = 
𝟏 

𝒏
    n 

Solution Let the sequence {xn} = {1, 
𝟏 

𝟐
, 

𝟏 

𝟑
……..}. 

   

Now, Lim xn =  Lim 
1 

𝑛
 = 0 

          n    n  

 Limit of the sequence = 0   ……….(1) 

Limit point of the set of the points of the sequence {xn} = {1, 
𝟏 

𝟐
, 

𝟏 

𝟑
……..}  

= 0 ……… (2) 

From equation (1) & (2), we get 

   Limit = Limit Point. 

Theorem  If a convergent sequence in a metric space has infinitely many distinct points, 

them its limit is a limit point of the set of the points of the sequence. 

Proof  Let X be a metric space and let {xn} be a convergent sequence in X with limit xX 

We assume that x is not a limit point of the set of the points of the sequence. 

This imply that there exists an open sphere Sr (x) centred on x, which contains no point of 

the sequence different from x. 

However, since x is the limit of the sequence, all xn ’s form some place on must lie in Sr (x). 

Hence, must concide with x. From this, we see that there are only finitely many distinct 

points in the sequence. But points are infinitely. (given) 
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Therefore, our assumption is wrong. 

Therefore, x is a limit point of the set of the points of the sequence. 

 Hence, The proof. 

Definition  Complete metric space.  

A metric space is said to be complete if every Cauchy sequence in it is convergent. 

For example,  IR, C are complete metric space. 

Example  Let C [a,b] be the set of all the real valued continuous functions defined on 

[a,b]. i.e. C [a,b] = [f  f : (a,b) continuous IR] 

We claim that C [a,b] is a complete metric space. 

Proof  We define in C [a,b] 

  d (f,g) = max. f(x) –g(x) , f,g  C [a,b] 

       x  [a,b] 

(i) Clearly, d (f, g)  0 [∵ f(x)-g(x)   0,  x  [a,b]]. 

 Also, d (f, g) =  max. f(x) –g(x)  = 0        

                                 x[a,b] 

 iff  f(x) –g(x)  = 0   x  [a,b] 

 iff  f(x) –g(x) = 0   x  [a,b] 

 iff  f(x) =g(x)     x  [a,b] 

 iff f = g 

Therefore, d (f,g) = 0  iff  f = g 

(ii) d (f, g) =  max. f(x) –g(x)  = max. (-1)g(x) –f(x)         

                          x[a,b]       x[a,b] 

=max. g(x) –f(x)   = d (g,f)       

                          x[a,b]   

(iii) d (f, g) =  max. f(x) –g(x)   

                          x[a,b] 

=  max. {f(x) –h(x)} + {h(x) –g(x)}    where h  C [a,b] 

                         x[a,b] 

 max. {f(x) –h(x)}  + max. {h(x) –g(x)}     

                         x[a,b]       x[a,b] 

  =  d(f,h) + d (h,g) 

Thus, d (f,g)  d(f,h) + d (h,g)   where  f,g,h  C [a,b] 

 d is a metric on  C [a,b] and therefore C [a,b] is a metric space. 

Next. We prove that C [a,b] is a complete metric space. 

Let {fn}be a Cauchy sequence in C [a,b]. 

 for given  >0, there exists a positive integer N such that 
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d (fn, fm) <    n, m  N. 

 max. fn(x) – fm(x) <    n, m  N &   x  [a,b]. 

  {fn(x)}is a uniformly Cauchy sequence.  

 {fn(x)}is a uniformly convergent.  

Let{fn(x)}be uniformly convergent to f(x). 

i.e  fn(x)  f(x) 

But we know that limit of a uniformly convergent sequence of continuous  

functions is again continuous. 

  f  C [a,b] 

Now d (fn, f) =  max. fn(x) –f(x)   

                          x[a,b]    

 0  as n 

 fn  f  C [a,b] 

Therefore, every Cauchy sequence in C [a,b] is convergent 

Hence, C[a,b] is a complete metric space.  

Hence, the prof. 

Theorem  Prove that IRn is a complete metric space. 

Proof  IRn = IR  IR  ------IR (n. times) 

= {(x1, x2, -----, xn)  xi IR, 1 i  n} 

To prove that IRn is a complete metric space, we first show that IRn is a metric space. We 

define 

  d : IRn  IRn  IR   by  

  d (x, y) = (∑ 𝑥𝑖 − 𝑦𝑖  
2𝑛

𝑖=1 )
1

2  ;  x, y IRn  

(i) Clearly, d (x, y)  0 [∵ xi -yi   0,  i, 1  i  n] 

 Also, d(x,y)=0  iff  (∑ 𝑥𝑖 − 𝑦𝑖  
2𝑛

𝑖=1 )
1

2 = 0 

 iff 𝑥𝑖 − 𝑦𝑖  
2
 = 0  i, 1  i  n 

 iff xi – yi = 0   i, 1  i  n 

 iff xi = yi    i, 1  i  n   

iff x = y   [As x = (x1, x2, -----, xn) = (y1, y2, ----, yn)= y] 

(ii) d (x, y) = (∑ 𝑥𝑖 − 𝑦𝑖  
2𝑛

𝑖=1 )
1

2  
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    = (∑ (−1)2𝑦𝑖 − 𝑥𝑖  
2𝑛

𝑖=1 )
1

2 = (∑ 𝑦𝑖 − 𝑥𝑖 
2𝑛

𝑖=1 )
1

2  

   = d (y,x) 

(iii) d (x, y) = (∑ 𝑥𝑖 − 𝑦𝑖  
2𝑛

𝑖=1 )
1

2 

  = (∑ (𝑥𝑖 − 𝑧𝑖 ) + (𝑧𝑖 − 𝑦𝑖 )
2 𝑛

𝑖=1 )
1

2 ,  zi  IR 

Using Misokauski’s Inequality, we have 

 d (x, y)  (∑ 𝑥𝑖 − 𝑧𝑖  
2𝑛

𝑖=1 )
1

2 + (∑ 𝑧𝑖 − 𝑦𝑖  
2𝑛

𝑖=1 )
1

2 

 d (x, y)  d (x,z) + d(z, y) 

Therefore, d is a metric on IRn. 

Hence, IRn is a metric space. 

Now, we claim that IRn is complete. 

Let {Pm} be Cauchy sequence in IRn. 

Now,      Pm  = {P1, P2, -------, Pm, -----} 

  =  {(𝑥1,
1  𝑥2,

1 ----,𝑥𝑛,
1 ), (𝑥1,

2  𝑥2,
2 ----,𝑥𝑛,

2 ),--------, (𝑥1,
𝑚 𝑥2,

𝑚----,𝑥𝑛,
𝑚), ------}  

R.T.P.  {Pm} is convergent in order to prove that IRn is complete   

[Now, we know that a sequence {(𝑥1,
𝑚 𝑥2,

𝑚----,𝑥𝑛,
𝑚), }of points of IRn is convergent to L., 

where L= (x1, x2, -----, xn), iff every coordinate sequence {𝑥𝑖
𝑚}is convergent to xi, 1  i  n] 

------------(A) 

Since {Pm} is a Cauchy sequence in IRn 

So, {𝑥𝑖
𝑚}is a Cauchy sequence in IR for i=1, 2, ------, n. 

 {𝑥𝑖
𝑚} is convergent for i  = 1, 2, ----, n. [∵ IR is complete] 

Let  lim   𝑥𝑖
𝑚 = xi 

 m 

 {𝑥1,
𝑚 𝑥2,

𝑚----,𝑥𝑛,
𝑚} converges to (x1, x2, -----, xn)   using (A) 

Therefore, (Pm) converges in IRn 

Hence, IRn is a complete metric space. 
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