Convergence in a Metric Space

Pawan Kumar
Registration No. 01409212020
Research Scholar: Mathematics
Dravidian University, Kuppam (A.P.) Pin code - 517425(India)

Definition - Let X be a metric space with metric d and let $\left\{x_{n}\right\}=\left\{x_{1}, x_{2} \ldots, x_{n}, \ldots\right\}$ be a sequence of points in X. We say that $\left\{x_{n}\right\}$ is convergent if \exists a point $x \in X$ such that either
(i) for each $\varepsilon>0, \exists$ a positive integer n_{0} such that $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)<\varepsilon, \quad \forall \mathrm{x} \geq \mathrm{n}_{0}$ OR
(ii) for each open sphere $S_{\varepsilon}(x)$ centred on x, \exists a positive integer n_{0} such that

$$
\mathrm{x}_{\mathrm{n}} \in \mathrm{~S}_{\varepsilon}(\mathrm{x}), \quad \forall \mathrm{n} \geq \mathrm{n}_{0}
$$

We usually symbolize this by writing $\mathrm{x}_{\mathrm{n}} \rightarrow \mathrm{x}$
The point x is called the limit of the sequence $\left\{x_{n}\right\}$ and we sometimes write

$$
\operatorname{Lim}_{n \rightarrow \infty} x_{n}=x
$$

Theorem \rightarrow Limit of a convergent sequence is always unique.
Proof \rightarrow Let $\left\{x_{n}\right\}$ be a sequence in a metric space X converging to $x \in X$

$$
\text { i. e. } x_{n} \rightarrow x \in X
$$

Let, if possible, $\quad x_{n} \rightarrow y \in X \quad(x \neq y)$
Consider,

$$
\begin{aligned}
& \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}\left(\mathrm{x}, \mathrm{x}_{\mathrm{n}}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}\right) \quad \text { (By triangle inequality) } \\
& =\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}\right) \quad \text { (By Symmetry) } \\
& \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \\
& {\left[\begin{array}{l}
\because x_{n} \rightarrow x \Rightarrow d\left(x_{n}, x\right) \rightarrow 0 \\
\& x_{n} \rightarrow y \Rightarrow d\left(x_{n}, y\right) \rightarrow 0 \\
\text { as } \mathrm{n} \rightarrow \infty \\
\mathrm{n} \rightarrow \infty
\end{array}\right]} \\
& \text { i.e. } d(x, y) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \\
& \Rightarrow \mathrm{x}=\mathrm{y}
\end{aligned}
$$

Therefore, the limit of a sequence is always unique.

Definition \rightarrow Cauchy Sequence

A sequence $\left\{x_{n}\right\}$ in a metric space X with metric d is said to be a Cauchy sequence if for any $\varepsilon>0, \exists$ a positive integer n_{0} such that

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)<\varepsilon \quad \forall \mathrm{n}, \mathrm{~m} \geq \mathrm{n}_{0}
$$

Theorem \rightarrow Every convergent sequence is Cauchy.
Proof \rightarrow Let $\left\{x_{n}\right\}$ be a convergent sequence l_{n} a metric space X with metric d.
Suppose $\quad \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{x} \in \mathrm{X}$
So, for a given $\varepsilon>0, \exists$ a positive integer n_{0} such that

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)<\frac{\varepsilon}{2} \quad \forall \mathrm{n} \geq \mathrm{n}_{\mathrm{o}} .
$$

For $\quad m, n \geq n_{0}$

$$
\begin{array}{rlr}
& \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right) \leq \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)+\mathrm{d}\left(\mathrm{x}, \mathrm{x}_{\mathrm{m}}\right) & \text { (By triangle inequality) } \\
& =\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)+\mathrm{d}\left(\mathrm{x}_{\mathrm{m}}, \mathrm{x}\right) \\
& <\quad \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon & \text { (By Symmetry) } \\
\Rightarrow \quad & \mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)<\varepsilon \quad \forall \mathrm{n}, \mathrm{~m} \geq \mathrm{n}_{0} &
\end{array}
$$

\therefore The sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a Cauchy sequence.
Remark \rightarrow Converse of the above theorem is not true.
i.e. A Cauchy sequence need not be convergent.

Example \rightarrow Let $X=(0,1)$ be the subspace of the real line. Let $\left\{x_{n}\right\}$ be a sequence in X defined by $\mathrm{x}_{\mathrm{n}}=\frac{1}{n}$

Proof \rightarrow First, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence.
Now $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{m}}\right)=\left|\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{m}}\right|=\left|\frac{1}{n}-\frac{1}{m}\right| \rightarrow 0 \quad$ as $\mathrm{n}, \mathrm{m} \rightarrow \infty$
$\Rightarrow \quad\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Next, we claim that $\left\{x_{n}\right\}$ is not convergent in X.
Now $\mathrm{x}_{\mathrm{n}}=\frac{1}{n}$
Clearly, $\operatorname{Lim} \mathrm{x}_{\mathrm{n}}=\operatorname{Lim} \frac{1}{n} \rightarrow 0$
$\mathrm{n} \rightarrow \infty \quad \mathrm{n} \rightarrow \infty$
But $\quad 0 \notin X=(0,1)$
Therefore, the given sequence is not convergent in X, though it is Cauchy in X.

Observations

1. Let $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ be a sequence such that $\mathrm{x}_{\mathrm{n}}=\mathbf{1} \quad \forall \mathrm{n}$

Solution \rightarrow Given sequence is of the type

$$
\{1,1,1, \ldots \ldots \ldots ., 1,1, \ldots \ldots \ldots\}
$$

Now $\lim \mathrm{x}_{\mathrm{n}}=\lim 1=1$

$$
\begin{equation*}
\mathrm{n} \rightarrow \infty \quad \mathrm{n} \rightarrow \infty \tag{1}
\end{equation*}
$$

\therefore Limit of the sequence $=1$
Now, limit point of the set of points of the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}=\{1,1,1, \ldots \ldots\}$

$$
\begin{equation*}
=\{1\}=\phi \tag{2}
\end{equation*}
$$

From equation (1) \& (2), we get

$$
\text { Limit } \neq \text { Limit point }
$$

2. Let $\left\{x_{n}\right\}$ be a sequence such that $x_{n}=\frac{1}{n} \quad \forall n$

Solution \rightarrow Let the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3} \ldots \ldots ..\right\}$.

$$
\text { Now, } \operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \mathrm{x}_{\mathrm{n}}=\quad \underset{\mathrm{n} \rightarrow \infty}{\operatorname{Lim} \frac{1}{n}=0}
$$

\therefore Limit of the sequence $=0$
Limit point of the set of the points of the sequence $\left\{\mathrm{x}_{\mathrm{n}}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3} \ldots \ldots ..\right\}$

$$
\begin{equation*}
=0 \tag{2}
\end{equation*}
$$

From equation (1) \& (2), we get
Limit = Limit Point.

Theorem \rightarrow If a convergent sequence in a metric space has infinitely many distinct points, them its limit is a limit point of the set of the points of the sequence.

Proof \rightarrow Let X be a metric space and let $\left\{x_{n}\right\}$ be a convergent sequence in X with limit $x \in X$ We assume that x is not a limit point of the set of the points of the sequence.
This imply that there exists an open sphere $\mathrm{S}_{\mathrm{r}}(\mathrm{x})$ centred on x , which contains no point of the sequence different from x .

However, since x is the limit of the sequence, all x_{n} 's form some place on must lie in $\mathrm{S}_{\mathrm{r}}(\mathrm{x})$. Hence, must concide with x. From this, we see that there are only finitely many distinct points in the sequence. But points are infinitely. (given)

Therefore, our assumption is wrong.
Therefore, x is a limit point of the set of the points of the sequence.
Hence, The proof.

Definition \rightarrow Complete metric space.

A metric space is said to be complete if every Cauchy sequence in it is convergent.
For example, IR, Φ are complete metric space.
Example \rightarrow Let $\mathrm{C}[\mathrm{a}, \mathrm{b}]$ be the set of all the real valued continuous functions defined on
$[\mathrm{a}, \mathrm{b}]$. i.e. $\quad \mathrm{C}[\mathrm{a}, \mathrm{b}]=[\mathrm{f} \mid \mathrm{f}:(\mathrm{a}, \mathrm{b}) \xrightarrow{\text { continuous }} \rightarrow \mathrm{IR}]$
We claim that $C[a, b]$ is a complete metric space.
Proof \rightarrow We define in C $[a, b]$

$$
\begin{aligned}
d(f, g)= & \max .|f(x)-g(x)|, \quad f, g \in C[a, b] \\
& x \in[a, b]
\end{aligned}
$$

(i) Clearly, d (f, g) $\geq 0[\because|\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})| \geq 0, \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]]$.

Also, $d(f, g)=\max .|f(x)-g(x)|=0$

$$
x \in[a, b]
$$

iff

$$
\begin{array}{ll}
\text { iff } \quad|\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})|=0 & \forall \mathrm{x} \in[\mathrm{a}, \mathrm{~b}] \\
\text { iff } \quad \mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})=0 & \forall \mathrm{x} \in[\mathrm{a}, \mathrm{~b}] \\
\text { iff } \quad \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) & \forall \mathrm{x} \in[\mathrm{a}, \mathrm{~b}] \\
\text { iff } \quad \mathrm{f}=\mathrm{g} & \\
\text { Therefore, } \mathrm{d}(\mathrm{f}, \mathrm{~g})=0 & \text { iff } \\
\mathrm{f}=\mathrm{g}
\end{array}
$$

iff $\quad \mathrm{f}=\mathrm{g}$
(ii) $\quad d(f, g)=\max .|f(x)-g(x)|=\max \cdot|(-1) g(x)-f(x)|$

$$
x \in[a, b] \quad x \in[a, b]
$$

$=\max .|g(x)-f(x)|=d(g, f)$
$x \in[a, b]$
(iii) $d(f, g)=\max \cdot|f(x)-g(x)|$

```
    \(x \in[a, b]\)
    \(=\max .|\{\mathrm{f}(\mathrm{x})-\mathrm{h}(\mathrm{x})\}+\{\mathrm{h}(\mathrm{x})-\mathrm{g}(\mathrm{x})\}| \quad\) where \(\mathrm{h} \in \mathrm{C}[\mathrm{a}, \mathrm{b}]\)
    \(\mathrm{x} \in[\mathrm{a}, \mathrm{b}]\)
    \(\leq \max .|\{\mathrm{f}(\mathrm{x})-\mathrm{h}(\mathrm{x})\}|+\max .|\{\mathrm{h}(\mathrm{x})-\mathrm{g}(\mathrm{x})\}|\)
    \(x \in[a, b] \quad x \in[a, b]\)
    \(=\mathrm{d}(\mathrm{f}, \mathrm{h})+\mathrm{d}(\mathrm{h}, \mathrm{g})\)
```

Thus, $d(f, g) \leq d(f, h)+d(h, g) \quad$ where $f, g, h \in C[a, b]$
$\Rightarrow d$ is a metric on $C[a, b]$ and therefore $C[a, b]$ is a metric space.
Next. We prove that $\mathrm{C}[\mathrm{a}, \mathrm{b}]$ is a complete metric space.
Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $C[a, b]$.
\Rightarrow for given $\varepsilon>0$, there exists a positive integer N such that

$$
\mathrm{d}\left(\mathrm{f}_{\mathrm{n}}, \mathrm{f}_{\mathrm{m}}\right)<\varepsilon \quad \forall \mathrm{n}, \mathrm{~m} \geq \mathrm{N} .
$$

$\Rightarrow \max .\left|\mathrm{f}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}_{\mathrm{m}}(\mathrm{x})\right|<\varepsilon \quad \forall \mathrm{n}, \mathrm{m} \geq \mathrm{N} \& \forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}]$.
$\Rightarrow\left\{f_{n}(x)\right\}$ is a uniformly Cauchy sequence.
$\Rightarrow\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{x})\right\}$ is a uniformly convergent.
$\operatorname{Let}\left\{f_{n}(x)\right\}$ be uniformly convergent to $f(x)$.

$$
\text { i.e } \quad f_{n}(x) \rightarrow f(x)
$$

But we know that limit of a uniformly convergent sequence of continuous functions is again continuous.

$$
\therefore \mathrm{f} \in \mathrm{C}[\mathrm{a}, \mathrm{~b}]
$$

$\operatorname{Now} d\left(f_{n}, f\right)=\max .\left|f_{n}(x)-f(x)\right|$

$$
\mathrm{x} \in[\mathrm{a}, \mathrm{~b}]
$$

$$
\rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

$\Rightarrow \mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f} \in \mathrm{C}[\mathrm{a}, \mathrm{b}]$
Therefore, every Cauchy sequence in $C[a, b]$ is convergent
Hence, $\mathrm{C}[\mathrm{a}, \mathrm{b}]$ is a complete metric space.
Hence, the prof.
Theorem \rightarrow Prove that IR^{n} is a complete metric space.
Proof $\rightarrow \mathrm{IR}^{\mathrm{n}}=\mathrm{IR} \times \mathrm{IR} \times \ldots---\times \mathrm{IR} \quad$ (n. times)
$=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right) \mid \mathrm{x}_{\mathrm{i}} \in \mathrm{IR}, 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$
To prove that IR^{n} is a complete metric space, we first show that IR^{n} is a metric space. We define

$$
\begin{aligned}
& \mathrm{d}: \mathrm{IR}^{\mathrm{n}} \times \mathrm{IR}^{\mathrm{n}} \rightarrow \mathrm{IR} \quad \text { by } \\
& \mathrm{d}(\mathrm{x}, \mathrm{y})=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}} \quad ; \quad \mathrm{x}, \mathrm{y} \in \mathrm{IR}^{\mathrm{n}}
\end{aligned}
$$

(i) Clearly, d $(\mathrm{x}, \mathrm{y}) \geq 0 \quad\left[\because\left|\mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}\right| \geq 0, \forall \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}\right]$

$$
\text { Also, } \mathrm{d}(\mathrm{x}, \mathrm{y})=0 \quad \text { iff }\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}=0
$$

iff $\quad\left|x_{i}-y_{i}\right|^{2}=0 \quad \forall \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
iff $\quad \mathrm{x}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}=0 \quad \forall \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
iff $\quad \mathrm{x}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} \quad \forall \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$
iff $\quad \mathrm{x}=\mathrm{y} \quad\left[\right.$ As $\left.\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \cdots, \mathrm{y}_{\mathrm{n}}\right)=\mathrm{y}\right]$
(ii) $\quad \mathrm{d}(\mathrm{x}, \mathrm{y})=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& =\left(\sum_{i=1}^{n}(-1)^{2}\left|y_{i}-x_{i}\right|^{2}\right)^{\frac{1}{2}}=\left(\sum_{i=1}^{n}\left|y_{i}-x_{i}\right|^{2}\right)^{\frac{1}{2}} \\
& =\mathrm{d}(\mathrm{y}, \mathrm{x})
\end{aligned}
$$

(iii) $\mathrm{d}(\mathrm{x}, \mathrm{y})=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}$

$$
=\left(\sum_{i=1}^{n}\left|\left(x_{i}-z_{i}\right)+\left(z_{i}-y_{i}\right)\right|^{2}\right)^{\frac{1}{2}} \quad, \quad \mathrm{z}_{\mathrm{i}} \in \mathrm{IR}
$$

Using Misokauski's Inequality, we have

$$
\mathrm{d}(\mathrm{x}, \mathrm{y}) \leq\left(\sum_{i=1}^{n}\left|x_{i}-z_{i}\right|^{2}\right)^{\frac{1}{2}}+\left(\sum_{i=1}^{n}\left|z_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

$\Rightarrow \mathrm{d}(\mathrm{x}, \mathrm{y}) \leq \mathrm{d}(\mathrm{x}, \mathrm{z})+\mathrm{d}(\mathrm{z}, \mathrm{y})$
Therefore, d is a metric on IR^{n}.
Hence, IR^{n} is a metric space.
Now, we claim that IR^{n} is complete.
Let $\left\{\mathrm{P}_{\mathrm{m}}\right\}$ be Cauchy sequence in IR^{n}.
Now, $\quad P_{m}=\left\{P_{1}, P_{2}, \cdots-----P_{m},----\right\}$

$$
=\left\{\left(x_{1}^{1}, x_{2}^{1}, \cdots, x_{n}^{1}\right),\left(x_{1}^{2}, x_{2}^{2}, \cdots,-\cdots x_{n}^{2}\right), \cdots \cdots,\left(x_{1}^{m}, x_{2}^{m}, \cdots, x_{n}^{m}\right), \cdots-\cdots\right\}
$$

$\underline{\text { R.T.P. }} \rightarrow\left\{\mathrm{P}_{\mathrm{m}}\right\}$ is convergent in order to prove that $I R^{n}$ is complete
[Now, we know that a sequence $\left\{\left(x_{1,}^{m} x_{2,---}^{m} x_{n,}^{m}\right)\right.$, \}of points of IR^{n} is convergent to L., where $L=\left(x_{1}, x_{2}, \cdots-\cdots, x_{n}\right)$, iff every coordinate sequence $\left\{x_{i}^{m}\right\}$ is convergent to $\left.x_{i}, 1 \leq i \leq n\right]$
\qquad
Since $\left\{\mathrm{P}_{\mathrm{m}}\right\}$ is a Cauchy sequence in IR^{n}
So, $\left\{x_{i}^{m}\right\}$ is a Cauchy sequence in IR for $\mathrm{i}=1,2, \cdots,-\cdots, \mathrm{n}$.
$\Rightarrow\left\{x_{i}^{m}\right\}$ is convergent for $\mathrm{i}=1,2,---, \mathrm{n} . \quad[\because$ IR is complete $]$
Let $\quad \lim x_{i}^{m}=x_{i}$
$\begin{aligned} & \mathrm{m} \rightarrow \infty \\ & \Rightarrow\left\{x_{1,}^{m}, x_{2,}^{m}---, x_{n,}^{m}\right\} \text { converges to }\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots---, \mathrm{x}_{\mathrm{n}}\right) \quad \text { using (A) }\end{aligned}$
Therefore, $\left(\mathrm{P}_{\mathrm{m}}\right)$ converges in IR^{n}
Hence, IR^{n} is a complete metric space.

References

1. I.J. Maddox,

Statistical Convergence in a locally convex space.
2. A.M. Alroqi and A. Alotaibi, Statistical Convergence in a paranormed space.
3. Patrick Billingsley, Convergence of Probability Measures.
4. H. Brezis and E. Lieb,

A relation between pointwise convergence of functions and convergence of functionals.
5. H.L. Royden, Real Analysis, Macmillan, New York (1963).
6. J.P. Aubin, Applied Abstract Analysis, Wiley (1977)
7. T. Apostol, Mathematical Analysis, Addison-Wesley.

